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ABSTRACT 

Let n be a regular cardinal. Consider the Baire numbers of the spaces (2°)~ 

for various 0 > n. Let I be the number of such different Baire numbers. 

Models of set theory with I = I or I --- 2 are known and it is also known 

that I is finite. We show here that if ~ ~> w, then I could be any given finite 

number. 

The Baire number of a topological space with no isolated points is the minimal 

cardinality of a family of dense open sets whose intersection is empty. The Baire 

number (also called the Nov£k number [V]) of a partial order is the minimal 

cardinality of a family of dense sets that has no filter [BS] (i.e. no filter on the 

given partial order intersecting all these dense sets non-trivially). Fn~(O,2)  is 

the collection of all partial functions p: 0 ~ 2 such that IP[ < n, and is partially 

ordered by reverse inclusion. For n regular and 8 _> ~ we consider the spaces 

(2°)~ whose points are functions from 0 to 2 and a typical basic open set is 

{f: 0 --* 2 [p  C f} where p e Fn~(0 ,2 ) .  We denote the Baire number of (2°)~ 

0 is also the Baire number of Fn~(O, 2). Let e It is not hard to see that n~ by n~. 

us now list some known facts (see [L] §1). 

FACTS: Let ~ be a regular cardinal and let O > x. Then 

o <_2 ~. 1. t¢ + < n~ 
0 = / ¢ + .  2. I f 2  <'¢ > n, then n,, 

el and therefore {n~: 0 >_ ~ is a cardinal} is finite. 3. I f  01 <_ 02, then n~ 2 < n~ 

4. If01 < 02 and n~ ~ = 01, then n~' = 01. 
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2 ~ 5. I f  0 = n~ , then 8 is the unique cardinal with n o = 0 and for every 81 __> 8, 

n°~ 1 = 8. 

A. Miller [M] proved that cof(n~,) > w but also produced a model for cof(n~' ) 

= ~. In this model I{n~: e >__ ~ is a cardinal}l = 2. Similar models for ~ > w can 

be found in [L]. In his above mentioned paper, Miller uses a countable support 

product of Fnw(w, 2) to increase n~ without changing the value of n~) (and hence 

getting n~, t < n~,). This idea will be used next to prove the following theorem. 

THEOREM: Let t¢ > w he a regular cardinal. I f  ZFC is consistent, then for every 

1 < I E w, ZFC is consistent with [{n~: 8 > ~ is a cardinal}l = I. 

This answers ([L] 1.6) for t¢ > w. We do not know whether the Theorem is true 

for ~ = ~o. Before we turn to the proof of the theorem, we will need the following 

lemma which is due to Miller. The proof of the lemma is a forcing argument that 

uses <>~. The use of <>'s in forcing arguments originated in [B]; for other such 

arguments see [Ka], [L] and [LI]. 

Det~nition: For the cardinals ~,0, A, let Q~(0, A) be the product of A many 

copies of Fn,,(8, 2) with support of cardinality _< ~. A condition q E Q~(8, A) 

is a function with dom(q) E [A] <~ and such that for every a E dom(q), q(a) E 

Fn,,(8, 2). The partial ordering is defined by putting q < p if and only if dora(q) D 

dom(p) and for every a • dora(p), q(a) D p(a). If {qa: a < 3'} C Q~(O, A) have a 

lower bound in Q,(0,  A), then let us denote the largest lower bound b y / ~ < ~  qa. 

LEMMA: Let ~ > w be a regular cardinal such that ~ holds. Let A, 0 >_ ~ be 

cardinals. Let Q = Q~(O, A). Then forcing with Q over V has the following 

property: for every function f: t¢ --~ V in the extension there is a set A • V such 

that (]AI -- ~)v and range(f)  C A (in particular, forcing with Q preserves t~+). 

Proof  of the /emma:  Assume that 

q0 II-Q %: n ~ V". 

Let M be an elementary substructure of the universe such that IM] = n, M is 

closed under sequences of length < n (i.e. for every a E ~, ~M C M), and such 

that qo, Q, ~, O, ~, r are all in M. Notice that every set in M that has cardinality 

< n is also a subset of M. Therefore, if q E Q N M, then q C M. 

L e t L = { A ~ : ~ < K } = M M A ,  a n d T = { 0 ~ : ( < n } = M M 0 .  For e v e r y ( <  n, 

let L~ = {A6:6 < (}, and T~ = {0e: 6 < ~}. Notice that L~,T~ E M.  
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For every a E x we define a function Ba: Q --* p (a  × ~) as follows: 
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(~, ~1) E B,~(q) 4:::::> [A{ E dom(q) A O. E dom(q(k~)) h q(kf)(O,1) = 1]. 

Notice that  for every a E ~, B~ E M (because L , , T ~  E M). 

Now, let us fix a <>~-sequence I = {I~: { < x} on x x x. Notice that for 

every { < x, I{ E M. We are now ready to construct a decreasing sequence 

{q~: a < g} C Q n M, below q0, that satisfies the following conditions: 

(1) . < f i  qa < q . .  
(2) (Va < x) L~ Qdom(q~,). 

(3)  a < f i  ~ q~ [L~=q~ r G .  
(4) If t~ E x is a limit ordinal, then q~ = / ~ < ~  q~. (Notice that q~ E Q N M 

because {qz: fl < a} E M.) 

(5) Given % let us define q~+a- 

Case (i): There exist r _< q~, such that for every { < (~, dom(r(A~)) = T~, 

and B~(r)  = I~, and r decides r I a. In this case, the same is true in 

M. Hence there are r~,,G E M such that r~, _< %, and for every { < a, 

dom(r~(A~)) = To,, and Bc~(r~) = I¢,, and 

r~ I~-Q "r  r ~ = G"-  

Let q~+, be defined as follows: qc,+l = (qa r La)U(r¢~ r (dom(r¢,) \ Le,)). 

Case (ii): -~ (case (i)). Let q~+l _< q~ be any extension in M that satisfies 

(2) and (3), and let t~ = 0. 

Finally, define q = / ~ < ~  q¢,. By (1) and (3) of the construction, q E Q. By (2), 

dom(q) = L. Let A = U~<~ range(G). We claim that 

q It-Q "range(r) C A". 

Assume not. Let s < q, and ~ E n be such that s I~-Q "r(6) ~ A". Let us define 

a decreasing sequence {s~: a < x} in Q that satisfies the following conditions: 

(1) = 

(2) (Va < x) s~ decides r I a. 

(3) If ~ < ~ is a limit ordinal, then s~ = / ~ < ~  s~. 

(4) (g~ < ~)(V{ < ~) T~, C dom(s,,(,~)). 
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Now let B = {({,~?) • ~ x ~: s~+,(A~)(0~) = 1}. Notice that  for every a < ~, 

B O a  x a = B,,(s~). Let C = {a  < g: (V( < a )  dom(s~(A~)) = T~}; C is a club. 

In addition, S = {a < ~: B Clot x a = I , }  is stationary. Pick a • C Cl S such 

that  a > 8. Then s,~ witnesses that  case (i) of part  (5) in the construction of 

{q~,: a < ~} holds (i.e. r = s~). So, we are given r~,,t~ • M such that  ra _< q~, 

and ra It-Q "r  [ a = ta" .  Hence 

r~ lt-Q "r(~) E A". 

But s~ < r~,, and s~, < s, and this implies the desired contradiction. | 

Proof of the theorem: Since the theorem is trivial for l = 1, let us assume that  

l > 2. Start  with a model V of ZFC + GCH + (}~. Let 

~ <_ 0~ < 02 < . . .  < 0t 

be cardinals with Oi ~ ~+, and Ot = 0+_~, and such that  if Oi ~ to, then cof(0i) > 

~;. Let 

A~ > A 2 > . . . > A t = O t  

be cardinals with )~1 = )~2 nt" and such that  cof(Ai) > ~+. 

Let Qi = Q~(Oi, AI) . Let us force with 

P = Q I  x . . .  x Qt_l. 

By the GCH, the partial orders F,~(Oi, 2) all have the ~+.c.c. ([K] VII 6.10). 

Therefore, P is (isomorphic to) a product of n+.c.c, partial  orders with support  of 

size < ~. Now use a delta system lemma and the Erdgs-Rado theorem ((2~) + ---* 

(~+)~) to show that  P is ~++.c.c. ([g] VIII(B7)),  and hence P preserves cardinals 

> ~++. Clearly, P is ~¢-closed and therefore cardinals < t¢ are preserved. Finally, 

by the Lemma,  t¢ + is preserved as well. 

Let G be a P-generic filter over V. Let 0 ~ ~¢+ be a cardinal with ~ < 0 < 01. 

Let i be the minimal such that  0 < Oi. Let us show that  

o Ai- (*) n~ = 

Notice that  (*) suffices for the proof of tile theorem since it in particular shows 

ol Ot and therefore by fact 5, (*) implies that  that  n~ = 

( vo  > o~) n,, = 
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In the remaining  case where 0 = n+, (*) implies tha t  n~ + = A1 or u~ + = A2. 

Therefore,  (*) implies tha t  {nO: 0 >_ n is a cardinal} = {Ai: 1 < i < l}. 

a > Ai. By fact 4, we m a y  assume tha t  1 < i < I. Notice Let us first show tha t  n~ 

tha t  since P is n-closed, Fn~(O, 2) is absolute  and has cardinal i ty  0 <~ < 0i < ,'~i- 

By the p roduc t  l emma,  we m a y  view forcing with P as forcing with the p roduc t  

I-[{Qi: 1 <_ j < l and j ¢ i} × Qi. Now, by the definition of Qi and since O _< Oi, 

it is easy to see tha t  any collection of < +~i m a n y  dense subsets  of Fn~(O, 2) in 

V[G], has  a filter. 

Final ly  we show tha t  u ° < +~i- Notice tha t  if i = 1, then this is clear because 

(2 ~ = +~1) y[6q (to see this use a counting nice names  a rgument  ([g] VII)) .  So let 

us assume tha t  i > 1 and  hence O > n++.  In addi t ion we m a y  assume tha t  O is 
0++ 

regular  (otherwise,  if 0 is singular,  then it suffices to prove tha t  u~ +- < )~i since 
<_ ,¢,+-I ). 

Let us now view forcing with  P as forcing with S × R, where 

S = q ~  x . . .  x ql-~ 

and 

R = Q1 X " "  x Q i _ l .  

Notice tha t  if i = l, then R = P and S is the tr ivial  par t ia l  order.  Let H be 

an S-generic filter over V, and  K be an R-generic filter over V[H] such tha t  

V[H × K] = V[G]. For every a: O --+ 2 with [a[ = ~ let us define 

D, = {t e Fn,(8, 2): (3~ E dom(a))  t(~) ~ a(~)}. 

In V[H],  define 7) = {Da l a: o -+ 2 and lal = ~}. 7:) is a collection of dense 

subsets  of Fn~(8,2) and 179[ = Ai (because (2 ~ = 8 ~ = Ai)v[H]). Let us show 

tha t  79 has no filter in V[G]. 

Assume,  by way of contradict ion,  tha t  F E V[G] is a filter for 79. Assume 

wi thout  loss of  general i ty  tha t  

IFSxR " F  is a filter for ~D". 

Let r be  a P - n a m e  for U F .  It  suffices to find ( s , r )  E S x R and an S - n a m e  7r 

such tha t  

s fl-s "[r:/9 --+ 2 and [~r[ = n and r I~-R "rr C r" ]" .  
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We now work in V. 

that 

Consider {re: ~ E 6}. 

For every ~ E 8, let (s~,r~) E S × R and u~ E 2 be such 

(s~, ~ ) I F  "~(0  = ~ " .  

Since ~ > ~++ and 8 is regular, we may use the delta 

system lemma to get X E [0] ° such that {dom(r~): ~ E X} form a delta system 

with a root A. Now, since IFn~(Oi_l,2)l = 6i-i  < t~ and IAI < ~, there exists 

Y E [X] e such that {r~: ~ E Y} all agree on A (i.e.(V~,T/E Y) ,'~ [ A = r ,  [ A). 

Consider {s~: ~ E Y}. Since S is ~++.c.c. there exists s' E S and a name a 

with 

s' IFs "a = {~ E Y: se E F} and = 0", 

where F is the canonical name for the S-generic filter. By the Lemma, there 

exists A E [Y]~ and s < s' such that 

s It-s "la n AI = ~". 

Let r be an S-name for the function whose domain is a n A and such that for 

every ~ E a n  A, ~r(~) = u~. Let r = U{r~: ~ E A}. Then r E R (because A C Y 

and A E V), and 

s Ibs "[Tr: 0 ~ 2, and lTrl = n, and r IFR "Tr C r"]" .  II 

Remark 1: If t¢ = w, then it is known that P (defined as in the proof of the 

Theorem but for t~ = w) collapses wl ([K] VIII(E4) and [M] p. 280), and (assum- 

ing CH) is R2.c.c. What one needs in order to get the argument of the Theorem 

to go through for the case t~ = w, is the following: if a is a set in the extension 

that is unbounded in (w2) v,  then there exists a countable set A in V such that 

A N a is infinite. This  is false by the following Proposition. 

PROPOSITION: Let A >_ w, and O > w be cardinals. Let Q = Qw(O, A). Then 

forcing with Q adds a set a C O, that is unbounded in O, and such that i f  A is a 

countable (in V)  ground mode/subset  of 0, then A n a is ~inite. 

Proof: For every n E w, let gn be the n ' th  generic function (i.e. gn: 8 --~ 2, and 

gn(a) = 1 if and only if there exists p in the Q-generic filter such that p(n)(a)  = 

1). Let a be the set defined in the extension by a = {a E 0: (Vn E w) g , (a )  = 1}. 

Since 8 _> (wl) v, and the supports of members of Q are countable, it is not hard 
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to see that a is unbounded in 0. Now let p • Q, and A • [0] r°. Let us find q _< p 

such that q I1- "[A fq a[ < I~0". We may assume that dom(p) D w. 

Let A* = {(~ • A: (qn • w) (~ ~ dom(p(n))}. Notice that A \ A* is finite. For 

every K • [w] <~° define a(K) = {c~ • A*: (Vn ~ K) c~ • dom(p(n))}; a(K) is 

finite. Fix {~i: i • w} an enumeration of A*. 

We now construct {qi: i • w} C Q, {ni: i • w} c w, and {Fi: i • w} finite 

subsets of A* that satisfy the following conditions: 

(1) q0 < P and for every i • w, qi+l <_ qi. 

(2) For every i • w, qi [ ()~ \ { n k :  k <_ i}) = p [ (~ \{nk:  k _< i}). 

(3) For every i • w, Fi C Fi+l, and Fi D a({nk: k _< i}). 

(4) U i e ~ F / =  A*. 

(5) i < j  ~ qj I { n k : k - < i }  =q i  I{nk :k -< i} -  

(6) For every i • w and every t~ • F/, qi IF "~ ~ a". 

STAGE 0: 

qo(no) by: 

Pick no • w with (~0 ~ dom(p(n0)). Let F0 = a({n0})U {c~0}. Define 

0 aEFo 
q0(n0)(a) = p(n0)(c0 ~ ~ F0 and a • dom(p(n0)). 

STAGE i +  1: If ~i+1 E Fi, then  ni+l -- hi ,  Fi+l = Fi,  and  qi+l -- qi. Otherwise, 

by (3), ai+l ~ a({nk: k < i}). Therefore, we can pick ni+l ~ {nk: k < i} 

such that (~i+1 ~ dom(p(ni+l)). By (2), c~i+l ~ dom(qi(ni+l)) as well. Let 

Fi+l = Fi U a({nk: k < i + 1}) U {t~i+m}. Define qi+l(ni+l) by: 

0 O/ ~ F i + l X F i  

qi+l (n i+l ) (°O = qi(ni+l)(Ot) oz ~ F i+ l  \ F i  and  oL E dom(q i (n i + l ) ) .  

Notice that  a E Fi+l \ F i  implies that either a = hi+l, or a E a({nk: k _< 

i + 1}) \ a({nk: k _< i}), and in either of these cases a ¢ dom(qi(ni+l)). 

Finally, let q = Aie,~ qi. By (2) and (5), q E Q mad clearly, q < p. By (4) and 

(6) ,  q It- "A* (q a = 0". | 

Remark 2: In the extension of the above Proposition we also have: a is an 

unbounded subset of 8, and if x e [a] ~°, then (Wl) v is countable in V[z]. This 

is true because Q is R2.c.c., and thus there is X E V with IX] = R1 and X D x. 

Now one can enumerate X, in V, in type (wl) V, and x must be unbounded in 
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this enumeration since otherwise it would be contained in a countable ground 

model set. 

Finally, we would like to mention that the Lemma implies that, the Proposition, 

stated for ~ > w (rather than w), is false. 
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