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ABSTRACT
Let & be a regular cardinal. Consider the Baire numbers of the spaces (2¢)
for various 6§ > x. Let ! be the number of such different Baire numbers.
Models of set theory with I = 1 or | = 2 are known and it is also known
that [ is finite. We show here that if « > w, then ! could be any given finite

number.

The Baire number of a topological space with no isolated points is the minimal
cardinality of a family of dense open sets whose intersection is empty. The Baire
number (also called the Novdk number [V]) of a partial order is the minimal
cardinality of a family of dense sets that has no filter [BS] (i.e. no filter on the
given partial order intersecting all these dense sets non-trivially). Fn,(6,2) is
the collection of all partial functions p: § — 2 such that |p| < x, and is partially
ordered by reverse inclusion. For & regular and § > & we consider the spaces
(2%)x whose points are functions from 6 to 2 and a typical basic open set is
{f: 8 > 2| pC f} where p € Fny(6,2). We denote the Baire number of (2%),
by n?. It is not hard to see that n? is also the Baire number of Fn,(6,2). Let

us now list some known facts (see [L} §1).

Facts: Let k be a regular cardinal and let 8 > «. Then

1. st <nf <2~

2. 2<% > k, then n = k™.

3. If 1 < 8,, then n%2 < n% and therefore {n?: § > « is a cardinal} is finite.
4. If 6; < 8, and n% = 6, then n% = 6,.
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5. If = n2", then 0 is the unique cardinal with n = @ and for every 8, > 4,
6 _
nit = 4.

A. Miller [M] proved that cof(n?) > w but also produced a model for cof(n®!)
= w. In this model |{nf: § > w is a cardinal}| = 2. Similar models for £ > w can
be found in [L]. In his above mentioned paper, Miller uses a countable support
product of Fn,(w,2) to increase n without changing the value of n¥! (and hence

getting n&! < n). This idea will be used next to prove the following theorem.

THEOREM: Let & > w be a regular cardinal. If ZFC is consistent, then for every
1 <l € w, ZFC is consistent with |{n®: 8 > « is a cardinal}| = I.

This answers ([L] 1.6) for k > w. We do not know whether the Theorem is true
for k = w. Before we turn to the proof of the theorem, we will need the following
lemma which is due to Miller. The proof of the lemma is a forcing argument that
uses {x. The use of ¢’s in forcing arguments originated in [B]; for other such
arguments see [Ka), [L] and [L1].

Definition: For the cardinals «,0, A, let @.(8,)) be the product of A\ many
copies of Fn.(8,2) with support of cardinality < k. A condition ¢ € Q«(6, )
is a function with dom(q) € [A\]S* and such that for every a € dom(g), ¢(a) €
Fn,(6,2). The partial ordering is defined by putting ¢ < pif and only if dom(gq) D
dom(p) and for every a € dom(p), g(a) D p(@). If {ga: @ < v} C Qx(6,\) have a

lower bound in Q«(6, ), then let us denote the largest lower bound by A, . - Qo

LEMMA: Let & > w be a regular cardinal such that {, holds. Let \,0 > & be
cardinals. Let @ = Q«(6,)). Then forcing with Q over V has the following
property: for every function f: k — V in the extension there is a set A € V such

that (JA| = k)" and range(f) C A (in particular, forcing with Q preserves xt).

Proof of the lemma: Assume that
@ kg “Tik = V7,

Let M be an elementary substructure of the universe such that |M| =k, M is
closed under sequences of length < « (i.e. for every a € x, “M C M), and such
that g0, @, A, 8, k, 7 are all in M. Notice that every set in M that has cardinality
< k is also a subset of M. Therefore, if ¢ € Q N M, then ¢ C M.

Let L={Ae:é<k}=MnAand T = {6 € <k} = MNG. Forevery £ < &,
let L = {Xs: 6 < £}, and T = {6s: 6§ < €}. Notice that L, T € M.
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For every a € k we define a function By: @ — p(a x a) as follows:
(§;n) € Ba(g) <= [X¢ € dom(q) A8, € dom(g(A¢)) A q(Ae)(6y) = 1.

Notice that for every o € k, B, € M (because Lo, Ty € M).

Now, let us fix a {-sequence I = {IE: £ < k} on k x k. Notice that for
every £ < k, It € M. We are now ready to construct a decreasing sequence
{ga: @ < K} C QN M, below gq, that satisfies the following conditions:

(1) a<f = ¢5< qa

(2) (Va < &) Lo C dom(ga).

(3) a<fB = ¢ La=4alLa

(4) If &« € £ is a limit ordinal, then ¢o = A4, 9. (Notice that ¢ € QN M
because {gp: B < a} € M.)

(5) Given gq let us define ga41.
Case (i): There exist r < ¢, such that for every £ < a, dom(r(A¢)) = Ta,
and Bo(r) = I,, and r decides 7 [ a. In this case, the same is true in
M. Hence there are ro,tq € M such that r, < ¢4, and for every £ < a,
dom(ra(A¢)) = Ta, and Bqy(ra) = I, and

re lbg “r Ja=1t,".

Let go+1 be defined as follows: gat+1 = (ga | La)U(re [ (dom(rg) ™ Lq)).
Case (ii): — (case (i)). Let ga41 < go be any extension in M that satisfies
(2) and (3), and let to = 0.

Finally, define ¢ = A <. 9a- By (1) and (3) of the construction, ¢ € Q. By (2),

dom(g) = L. Let A =/, range(ts). We claim that

a<lk
g ltq “range(7) C A”.

Assume not. Let s < ¢, and § € & be such that s lFg “r(6) ¢ A”. Let us define
a decreasing sequence {sq: a < k} in @ that satisfies the following conditions:
(1) so =s.
(2) (Va < k) sq decides 7 [ a.
(3) If a < & is a limit ordinal, then so = A4, 3p-
(4) (Va < k)(V€ < k) Ty C dom(sa(A¢)).



292 A. LANDVER Isr. J. Math.

Now let B = {(£,1) € £ X £: sp+1(Ae)(6y) = 1}. Notice that for every a < «,
BNaxa = Ba(sq). Let C = {a < &: (V€ < a) dom(sq(A¢)) = To}; Cis aclub.
In addition, S = {a < k: BNa X a = I,} is stationary. Pick &« € C N § such
that & > 6. Then s, witnesses that case (i) of part (5) in the construction of
{ga: @ < k} holds (i.e. 7 = s4). So, we are given ro,tq € M such that ro < qq,

and ro kg “7 [ o = 1,”. Hence
rq lFg “7(8) € A”.

But sq < 74, and 84 < s, and this implies the desired contradiction. [ |

Proof of the theorem: Since the theorem is trivial for I = 1, let us assume that

1 > 2. Start with a model V of ZFC + GCH + . Let
5591 <92<"'<91

be cardinals with 6; # «*, and 6; = 0;*_1, and such that if 8; # «, then cof(6;) >
k. Let
AM>A > >N=6

be cardinals with A\; = A and such that cof(A;) > «*.
Let @Q; = @« (8i,A:i) . Let us force with

P=Q1 X"'XQ(-].

By the GCH, the partial orders F'n.(6;,2) all have the x*.c.c. ([K] VII 6.10).
Therefore, P is (isomorphic to) a product of ™ .c.c. partial orders with support of
size < k. Now use a delta system lemma and the Erdés—Rado theorem ((2%)* —
(k%)2) to show that P is k**.c.c. ((K] VIII(B7)), and hence P preserves cardinals
> xtt. Clearly, P is k-closed and therefore cardinals < k are preserved. Finally,
by the Lemma, x* is preserved as well.

Let G be a P-generic filter over V. Let 6 # x* be a cardinal with x < 6 < 6,.
Let ¢ be the minimal such that § < 8;. Let us show that

*) = A

Notice that (*) suffices for the proof of the theorem since it in particular shows
that n? = §; and therefore by fact 5, (x) implies that

(V6 > 6) né =\
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In the remaining case where § = %, (x) implies that n,'§+ = M\ or n',z+ = s
Therefore, () implies that {nf: § > & is a cardinal} = {)\;: 1 <: < 1}.

Let us first show that ni > ). By fact 4, we may assume that 1 < ¢ < [. Notice
that since P is s-closed, Fn.(#,2) is absolute and has cardinality <~ < §; < A;.
By the product lemma, we may view forcing with P as forcing with the product
[[{Q;: 1 <j <landj #1} x Q;. Now, by the definition of Q; and since § < §;,
it is easy to see that any collection of < A; many dense subsets of Fn,(6,2) in
VI[G], has a filter.

Finally we show that n® < );. Notice that if i = 1, then this is clear because
(2% = A1)V1C (to see this use a counting nice names argument ([K] VII)). So let

us assume that ¢ > 1 and hence § > k**. In addition we may assume that 6 is
++

. . . . 8 .
regular (otherwise, if 8 is singular, then it suffices to prove that n,/~' < \; since

oF
nd <nd).

Let us now view forcing with P as forcing with S x R, where

S=Qix - xQiq

and

R=Q; x+ xQi-1.

Notice that if ¢ = I, then R = P and S is the trivial partial order. Let H be
an S-generic filter over V, and K be an R-generic filter over V[H] such that
VI[H x K] = V[G]. For every a: § — 2 with |a| = & let us define

D, = {t € Fny(6,2): (3¢ € dom(a)) #(£) # a(&)}.

In V[H], define D = {D, | a: § — 2 and |a¢| = &}. D is a collection of dense
subsets of Fn.(8,2) and |D] = \; (because (2% = 6% = X;)VIH]). Let us show
that D has no filter in V[G].

Assume, by way of contradiction, that F € V[G] is a filter for D. Assume
without loss of generality that

lFsxr “F is a filter for D”.

Let 7 be a P-name for |JF. It suffices to find (s,r) € S x R and an S-name =
such that

sltks “[r:8 — 2 and |7| = k and r IFg “r C 77]".
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We now work in V. For every £ € 0, let (s¢,7¢) € § x R and u¢ € 2 be such
that

(S(,T‘E) I+ “T(f) = ue”.

Consider {re: £ € 6}. Since § > s** and 6 is regular, we may use the delta
system lemma to get X € [0]° such that {dom(r¢): £ € X} form a delta system
with a root A. Now, since |Fn.{0i-1,2)] = 6;—; < 8 and |A| < k, there exists
Y € [X])% such that {re: £ € Y} all agreeon A (i.e.(V§,n€Y) re [A =1, | A).
Consider {s¢: £ € Y)}. Since S is k¥%.c.c. there exists s' € S and a name o
with
s'lks“c={(€Y:s¢ €T} and |o|=6",

where T is the canonical name for the S-generic filter. By the Lemma, there
exists A € [Y]* and s < s’ such that

slks “loNA| = «".

Let # be an S-name for the function whose domain is & N A and such that for
every £ €o N A, m(€) =ug. Let r =J{re: € € A}. Thenr € R (because ACY
and A € V), and

slkg “[7!’: 6 — 2, and |7rl = K, andr kg “x C T”]”, 1

Remark 1: If k = w, then it is known that P (defined as in the proof of the
Theorem but for £k = w) collapses w; ([K] VIII(E4) and [M] p. 280), and (assum-
ing CH) is Rz.c.c. What one needs in order to get the argument of the Theorem
to go through for the case k = w, is the following: if o is a set in the extension
that is unbounded in (UJ2)V, then there exists a countable set A in V such that

AN o is infinite. This is false by the following Proposition.

PROPOSITION: Let A > w, and § > w be cardinals. Let @ = @,(6,)). Then
forcing with Q) adds a set ¢ C 6, that is unbounded in 8, and such that if A is a
countable (in V') ground model subset of 6, then AN o is finite.

Proof: For every n € w, let g, be the n’th generic function (i.e. g,: 8§ — 2, and
gn{@) = 1 if and only if there exists p in the Q-generic filter such that p(n)(a) =
1). Let o be the set defined in the extension by ¢ = {a € 6: (Vn € w) gu(a) = 1}.

Since 6 > (wl)v, and the supports of members of ) are countable, it is not hard



Vol. 81, 1993 FINITE COMBINATIONS OF BAIRE NUMBERS 295

to see that ¢ is unbounded in 8. Now let p € @, and A € [6]™. Let us find ¢ <p
such that ¢ IF “/ANa| < Re”. We may assume that dom(p) D w.

Let A* = {a € A: (In € w) a ¢ dom(p(n))}. Notice that A A* is finite. For
every K € [w]<® define a(K) = {a € A*: (Vn ¢ K) a € dom(p(n))}; a(K) is
finite. Fix {a;: i € w} an enumeration of A*.

We now construct {g;: 1 € w} C @, {ni: ¢t € w} C w, and {F;: i € w} finite
subsets of A* that satisfy the following conditions:

(1) go < p and for every ¢ € w, ¢it1 < ¢

(2) Foreveryi €w, q; | AN ng: k <i}) =p [ (AN{ng: k < 4}).
(3) For every i € w, F; C Fi41, and F; D a({ns: k < i}).

(4) UieuFi = A*.

(5)i<j = g [ {nuk<i}=q [ {ne: k <2}

(6) For every i € w and every a € Fj, ¢; IF “a ¢ 0”.

STAGE 0: Pick ng € w with ag ¢ dom(p(no)). Let Fy = a({ne})U {ao}. Define
qo(no) by:

o a € Fy
to{no)(e) = { p(no)(a) a ¢ Fy and a € dom(p(n,)).
STAGE i1 +1: If a;41 € Fy, then nyyy = ny, Fipq1 = Fi, and ¢iy1 = ¢;. Otherwise,
by (3), ai+1 ¢ a({nx: k < i}). Therefore, we can pick nit1 ¢ {nx: k£ < 4}
such that a;t+1 ¢ dom(p(ni+1)). By (2), ait1 ¢ dom(gi(niy1)) as well. Let
Fiiy=FUa({nk: k <i+1}) U {ais1}. Define giy1(nig1) by:

0 a € Fiy1 N F

gi+1(nigr)(a) = { gi(niz1)(@) a ¢ Fiy1 N F; and a € dom(qi(niy1)).

Notice that o € Fiy; N\ F; implies that either @ = a;y1, or a € a{{ng: k <
i+ 1}) N a({ns: k < 1}), and in either of these cases o ¢ dom({gi(nit1)).

Finally, let ¢ = A;c_ ¢i- By (2) and (5), ¢ € @ and clearly, ¢ < p. By (4) and
(6), ¢lF “A*Na =0". [ |

Remark 2: In the extension of the above Proposition we also have: ¢ is an
unbounded subset of 8, and if z € [0}, then (w;)V is countable in V[z]. This
is true because @ is Rj.c.c., and thus there is X € V with |X| =®; and X D z.

Now one can enumerate X, in V, in type (w;)¥, and z must be unbounded in
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this enumeration since otherwise it would be contained in a countable ground

model set.

Finally, we would like to mention that the Lemma implies that, the Proposition,

stated for £ > w (rather than w), is false.

(B]
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v)
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